Some Lil Type Results on the Partial Sums and Trimmed Sums with Multidimensional Indices

نویسنده

  • WEI-DONG LIU
چکیده

Let {X,Xn;n ∈ N} be a field of i.i.d. random variables indexed by d-tuples of positive integers and let Sn = ∑ k≤n Xk. We prove some strong limit theorems for Sn. Also, when d ≥ 2 and h(n) satisfies some conditions, we show that there are no LIL type results for Sn/ √ |n|h(n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF rhoast-MIXING SEQUENCES

We call this a Chover-type LIL (laws of the iterated logarithm). This type LIL has been established by Vasudeva and Divanji [13], Zinchenko [14] for delayed sums, by Chen and Huang [3] for geometric weighted sums, and by Chen [2] for weighted sums. Qi and Cheng [11] extended the Chover-type law of the iterated logarithm for the partial sums to the case where the underlying distribution is in th...

متن کامل

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Let  be a sequence of arbitrary random variables with  and , for every  and  be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on  and sequence .

متن کامل

Limsup Results and Lil for Partial Sums of Random Sequences

In this paper we establish limsup results and a generalized uniform law of the iterated logarithm (LIL) for the increments of partial sums of strictly stationary and linearly positive quadrant dependent (LPQD) or linearly negative quadrant dependent (LNQD) random sequences.

متن کامل

Limsup Results and a Generalized Uniform Lil for an Lpqd Sequence

In this paper we establish some limsup results and a generalized uniform law of the iterated logarithm (LIL) for the increments of partial sums of a strictly stationary and linearly positive quadrant dependent (LPQD) sequence of random variables.

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007